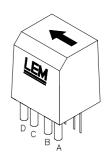


Current Transducer HA 10 to 25-NP/SP2

For the electronic measurement of DC, AC and pulsed currents, with a galvanic isolation between the primary (high power) circuit and the secondary (electronic) circuit.

Electrical data Primary Nominal **Primary Current** Rms current I_{PN} (A) measuring range I_D (A) Primary terminal connections Series Parallel Series Parallel **HA 10-NP/SP2** ± 5 ± 10 0 .. ± 10 0 .. ± 20 HA 25-NP/SP2 ± 12.5 ± 25 0 .. ± 25 0 .. ± 50

Îp	Overload capacity (1 ms)	50 x I _{PN}	Α
V _{OUT}	Analogue output voltage @ I _P = 0	+ 2.5	V
00.	Analogue output voltage @ $\mathbf{I}_{P} = \pm \mathbf{I}_{PN}$	+ 2.5 ± 1	V
$R_{\scriptscriptstyle L}$	Load resistance	> 2	$k\Omega$
V _c	Supply voltage (± 5%)	+ 15	V
I _c	Current consumption (max)	< 20	mA
$\mathbf{V}_{_{\mathrm{b}}}$	Rms rated voltage ¹⁾	500	V
V d	Rms voltage for AC isolation test, 50 Hz, 1 mn		
ű	Primary to secondary	2.5	kV
	Primary 1 to primary 2 2)	1	kV
\mathbf{R}_{is}	Isolation resistance @ 500 V_{DC}	> 500	$M\Omega$


Accuracy - Dynamic performance data					
X	Accuracy ³⁾ @ I _{PN} , T _A = 25°C, @ + 15 V	± 1	%		
$\mathbf{\epsilon}_{\scriptscriptstyle ar{}}$	Linearity 3)	± 1	%		
		Max			
\mathbf{V}_{OE}	Electrical offset voltage @ $I_p = 0$, $T_A = 25$ °C + 2.5 V	± 50	mV		
\mathbf{V}_{OM}	Residual offset voltage @ I _P = 0				
	after an overload of 3 x I _{PN}	± 5.5	mV		
\mathbf{V}_{OT}	Thermal drift of offset voltage $T_A = -10 + 80$ °C	± 1.5	mV/°K		
TCE _G	Thermal drift of gain $T_A = -10 + 80$ °C	± 0.07	%/°K		
t _r	Response time @ 90 % of I _P	< 3	μs		
di/dt	di/dt accurately followed	> 50	A/µs		
f	Frequency bandwidth (- 3 dB) 4)	DC 50	kHz		

General data					
T _△	Ambient operating temperature	- 10 + 80	°C		
\mathbf{T}_{s}^{n}	Ambient storage temperature	- 25 + 85	°C		
m	Mass	10	g		
	Standards 5)	EN50178 (19	EN50178 (1994)		

Notes: 1) Overvoltage Category III, Pollution Degree 2

- 2) Primary 1 is between A and B, primary 2 is between C and D
- 3) Excludes the electrical offset
- ⁴⁾ Refer to derating curves in the technical file to avoid excessive core heating at high frequency
- ⁵⁾ Please consult characterisation report for more technical details and application advice.

$I_{PN} = 5...25 A$

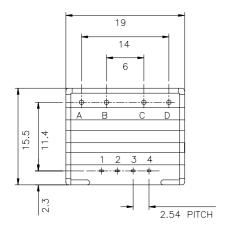
Features

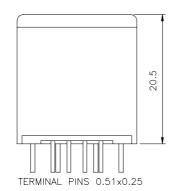
- Open loop transducer using Hall Effect
- Printed circuit board mounting
- Insulated plastic case to UL 94-V0
- Externally programmable for desired rating
- Galvanic isolation between primary windings.

Advantages

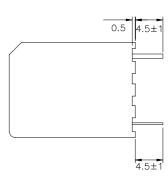
- Very good linearity
- Very good accuracy
- Low temperature drift
- Wide frequency bandwidth
- Very low insertion losses
- High immunity to external interference
- Current overload capability
- Low power consumption
- Wide dynamic range, 5 to 50 A in one package
- Easy to mount with automated handling systems.

Applications


- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptable Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


HANP2980903/1

Dimensions HA 10 to 25-NP/SP2 (in mm. 1 mm = 0.0394 inch)


Bottom view

Front view

Left view

Primary connections

Series A: I_p in

 $\begin{array}{ll} {\sf D}: & {\bf I}_{{\sf P}} \ {\sf out} \\ {\sf Connect} \ {\sf B} \ {\sf to} \ {\sf C} \end{array}$

Parallel A + C: I_P in

B + D: I_p out

Isolated primary

A: Primary 1 I_P in B: Primary 1 I_P out C: Primary 2 I_P in D: Primary 2 I_D out

Secondary terminals

Terminal 1 : NC Terminal 2 : 0V

Terminal 3 : supply voltage + 15 V

Terminal 4 : output

Mechanical characteristics

• General tolerance ± 0.5 mm

• Fastening & connection of primary

HA 10-NP/SP2 4 pins Ø 0.71 mm **HA 25-NP/SP2** 4 pins Ø 1.4 mm

Recommended pcb hole

HA 10-NP/SP2 4 pins Ø 1 mm **HA 25-NP/SP2** 4 pins Ø 1.8 mm

• Fastening & connection of secondary

4 pins Ø 0.51 x 0.25 mm

Recommended pcb hole Ø 1 mm

Remarks

- $\bullet~\mathbf{V}_{\text{OUT}}$ is positive when \mathbf{I}_{P} flows in the direction of the arrow.
- This is a standard model. For different versions (supply voltages, secondary connections, unidirectional measurements, operating temperatures, etc.) please contact us.